
Topic : Solid State

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.10

(3 marks, 3 min.)

[30, 30]

Match the Following (no negative marking) Q.11

(8 marks, 10 min.)

[8, 10]

1. Column A describe nature of bonding and Column B the solid having that type of bonding :

A (Nature of bonding)	B (solid)
I. Van der Waals	P. Al, Cd
II. Ionic	Q. CO_2, H_2
III. Metallic	R. Si, diamond
II. Covalent	S. MgO, NaCl

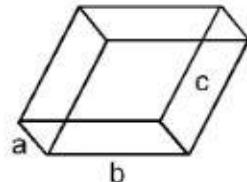
Correct matching of A and B is in alternate :

	I	II	III	IV		I	II	III	IV
(A)	P	Q	R	S	(B)	Q	S	P	R
(C)	Q	P	R	S	(D)	S	P	Q	R

Column-I (Bravais Lattice(s))	Column-II [Crystal system]
(A) Primitive, face centered, body centered, end centered	(p) Cubic
(B) Primitive, face centered, body centered	(q) Orthorhombic
(C) Primitive, body centered	(r) Hexagonal
(D) Primitive only	(s) Tetragonal

Answer Key

DPP No. # 41


1. (B) 2. (a) (C) (b) (A) 3. (a) (B) (b) (B) 4. (a) (D) (b) (A)
5. (a) (A) (b) (B) 6. (a) (C) (b) (D) 7. (C) 8. (C)
9. (a) (B) (b) (A) 10. (a) (D) (b) (C) 11. (A) - (q) ; (B) - (p) ; (C) - (s) ; (D) - (r)

Hints & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. # 41

2. (a) For triclinic $a \neq b \neq c$ & $\alpha \neq \beta \neq \gamma \neq 90^\circ$
3. (b) $a \neq b \neq c$ & $\alpha = \beta = \gamma = 90^\circ$ the crystal system is orthorhombic
6. (a) $P = 8 \times \frac{1}{8} = 1$; $Q = 1 = 1$; $R = 12 \times \frac{1}{4} = 3$; formula = PQR_3
(b) $Au = 8 \times \frac{1}{8} = 1$ $Cu = 6 \times \frac{1}{2} = 3$ formula $AuCu_3$
7. $A = 7 \times \frac{1}{8} = \frac{7}{8}$; $B = 6 \times \frac{1}{2} = 3$
Formula = $A_{7/8} B_3$ or $A_7 B_{24}$
10. (a) In triclinic unit cell.
 $a \neq b \neq c$
 $\alpha \neq \beta \neq \gamma$
(b). In simple cubic contribution of one corner = $\frac{1}{8}$
total corner = 8
effective no. of atom per unit cell = $\frac{1}{8} \times 8 = 1$
No. of body center in simple cubic = 1
No. of atom in body center = 1
AB

